IceBat

Update on IceBat

Ice Bat decided to leave his lair for a bit. He’s only checking in here once in a while. Actually, to be honest, he tends to like his new home. In other news, I’ve been really fortunate to have the opportunity to write for The Hardball Times, so that’s where I’ve been lately. Follow my baseball musings there, if you’ve got a moment. I’ll be sure to check around here though, don’t worry.

Standard
Graphs, Hitters, IceBat

Home Runs Follow Up

As I stated in my last post, predicting home runs from fly ball data could be another component of how we compare home run hitting abilities of players. As you can see from the graph above, I plotted the fitted values from the model split by each hitter. Most of the fitted values tend to be at the extremes, which coincide with logistic model properties. As for comparing hitters, it looks like Adam Dunn has the most predicted fly balls becoming home runs, while Jason Bay is on the other side of the fence.

In case you were wondering, here are each player’s mean HR prediction for fly balls: Adam Dunn (~50.4%), Manny Ramirez (~39.2%) and Jason Bay (~34.0%). No surprises there really. The order of these hitter’s HR predictions coincide with their career HR/FB rates and our general notion of their hitting style. Dunn swings for the fences or strikes out otherwise, while Manny and Bay display more use of the entire field (though that may be an optimistic statement about Manny’s capabilities now). While Hit Tracker does an excellent job telling us how far home runs really went, and what park/weather factors impacted the ball’s real projection, we don’t really have an idea of what those factors had on non-HR fly balls. Though I am speculating, maybe this topic of research will increase once the data from Field F/X (previewed in THT’s 2011 Annual) is published. Only time will tell…

Standard
Graphs, Hitters, IceBat

Home Runs: They May Deceive You

First of all, Happy New Years everyone! Hope you had a fun time doing whatever you do on these holidays. IceBat was a party pooper and decided to sleep all night in his freezer bed.

As you may remember, back in December I had to complete a couple of final projects. One idea that I didn’t use dealt with the concept that home runs are not always equal in displaying a player’s power or batting skills. We  equate overpowering shots to right-center field by Prince Fielder with balls that graze the more-than-generous right field wall of Yankee Stadium. What I mean is, there are more variables than just pure distance that go in to determining whether or not a fly ball becomes a home run. With this in mind, I can run a regression model to compute the probability that a flyball will turn in to a home run. I received a large data set (many thanks to Greg Rybarczyk at Hit Tracker) that spans the 2006-2008 seasons for three players (Adam Dunn, Manny Ramirez and Jason Bay). The data includes observational and calculated data (in the similar ways of Hit Tracker’s data – i.e. True Distance or Elevation Angle, etc.) on every long fly ball the players hit, totaling a tad over 700 observations. Included are variables such as what ballpark the ball was hit in, date & time, and the outcome of the play (single, double, home run, out, etc.)

As you can tell from the graph above, the outcome of the play isn’t so clear when only given the elevation angle and distance traveled summary of the ball. All the outcomes are generally scattered so that we cannot conclude any real correlation. I superimposed two boxes to easily show how similar balls can have different outcomes. In the case of the right-side box, a slightly different elevation angle could mean the difference between a home run and a fly ball.

Continue reading

Standard
Hitters, IceBat, OffSeason, Salaries

MLB Free Agency Modeled-Out

Hey folks. Sorry to keep you all at bay these past couple of weeks. IceBat was…sick.

Another final report I wrote was based on MLB Free Agent contracts, and how or if we can model their outcomes based on prior years’ performance. The contract terms I used as response variables were contract length (in years) and average salary per season. I also focused on hitters and how metrics like Batting Average, On-Base Percentage, Home Runs, or even advanced ones like Wins Above Replacement (WAR) can help us see what the market is favoring and at what price. The reason to use different sources of metrics is to see what MLB Executives are listening to: traditional statistics or those advanced ones used by the Sabermetric community? Using models like this can also have some predictive powers.

Continue reading

Standard
Graphs, Hitters, IceBat, Pitching

No Time!!

Crazy schedule for me these next few weeks. I’ll try to stay active, I promise. If not, IceBat will take over, but I’m guessing he won’t say much (he’s pretty shy and likes to chill in the corner of my room). Anyways, I thought I’d share a recent report I did for my times series class. It’s about the general shift of runs scored per game (by one team) over the years of MLB’s existence. If you have some time (and enjoy a few technical terms) I’ve uploaded a link below. Happy December holidays!

R.G in MLB History

Standard
Graphs, IceBat, Pitching

Pitch F/X

Ever wonder the exact location, movement, speed, rotation, spin angle of a pitch? With Pitch F/X, every ball thrown in the majors is calculated to a science. It’s pretty awesome but even after spending hours looking at the data, it can be a bit confusing as to what the variables mean and how they are meaningful. I’ll try to explain most of the variables to the best of my abilities. I’ll be using F/X data from Dallas Braden’s perfect game on May 9, 2010 against the Tampa Bay Rays.

Continue reading

Standard
Defense, IceBat

Gold Glove Nonsense

So…I was having a pretty good day, woke up, had some coffee, some class, relaxing before a midterm, midterm went well, excellent meal with my one and only, HIMYM, and then one of those naps where you don’t feel entirely groggy/sluggish after waking up (ie – the best kind). And then I turn my head to the daily baseball headlines and find that the Gold Glove Awards, an award for the best defenders in the game (or so you would like to think) for the AL were announced:

NEW YORK (AP)—Seattle right fielder Ichiro Suzuki has won his 10th straight Gold Glove and New York Yankees shortstop Derek Jeter has won his fifth overall…

I find it a little hard to believe that Derek Jeter was able to win this award, for the second time in a row. All the news sources point to his efficiency with only 6 errors over the year. Well what about those balls that he couldn’t possibly get to, considering his limited range (meaning he just can’t get to balls that are farther away the way other start shortstops can)? Those balls get scored as hits rather than “Balls Jeter couldn’t get to”.

Also, any advanced defensive metric out there these days answer many questions that can lead us toward comparing fielders. Like how much ground is a shortstop able to cover? Is this due to great timing/instinct or great footwork? How accurate is his arm? How many runs can he save over the course of the year? In any of these metrics, you will find Derek Jeter at the bottom of the list. Guaranteed.

Continue reading

Standard